AT-GRADE JUNCTION

Basic concepts

- Angle " α " at which the major and minor road cross $75^{\circ} \le \alpha \le 105^{\circ}$
- The angle is defined between connection of points AX and CX for the purpose of the exercise fig. 0520

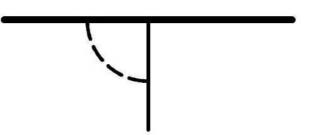


fig. 0520 (crossing angle on T-junction)

- Slip road road lane or carriageway which connects atgrade junction legs in area outside of the junction centre (separated from leg by traffic island or ghost island (hatched road marking) – *fig. 0530*)
- Junction corner area between road edge of at-grade junction and outer edges of intersecting traffic lanes (enables smooth right turn – *fig. 0530*)

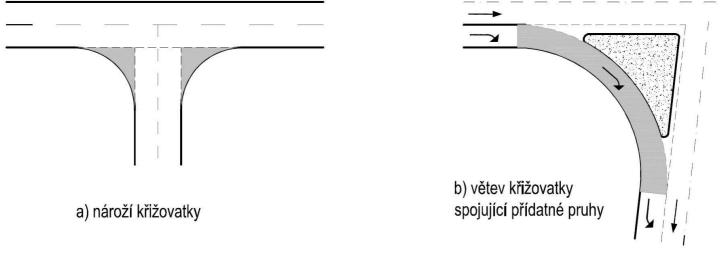
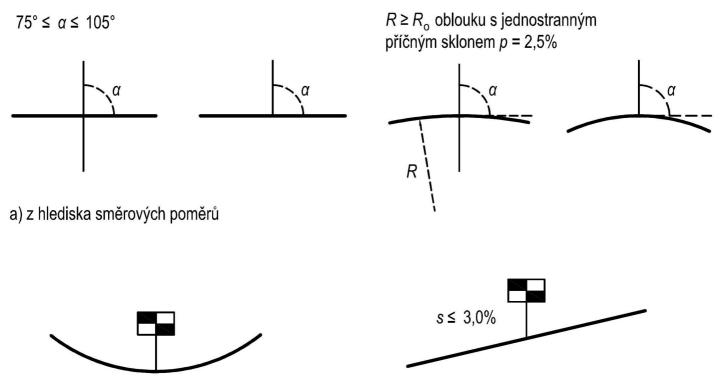



fig. 0530 (corner and slip road on at-grade junction)

PRINCIPLES OF JUNCTION DESIGN

- Place the junction on horizontally straight section or on the outer edge of horizontal curve with large radius – see *fig. 0540*
- Place the junction on vertically straight section with longitudinal gradient $\leq 3\%$ or in a sag curve *fig. 0540*

b) z hlediska výškových poměrů

fig. 0540 (appropriate location of at-grade junction)

- essential criterion and aspect of junction design = road safety \Rightarrow human factor must be taken into account
- at-grade junctions must always have one road indicated as major road and other as minor

ELEMENTS OF JUNCTION

Basic geometric elements of junction (fig. 0550):

fig. 0550 (T-junction with all elements except a merge lane)

- mainline
- auxiliary lanes (even in a shortened version)
 - diverge lane (for turning)
 - merge lane (for connecting)
- traffic islands (can be substituted by ghost islands)
- central reservation, green belts and other divisions
- junction corners
- slip roads (and other connectors)

Mainline

- basic lane width in straight at junctions = width outside of an junction (on major or minor road)
- determine basic elements of typical cross-section for both intersecting roads according to their categories (see the assignment) according to *fig. 0560* and *fig. 0570*

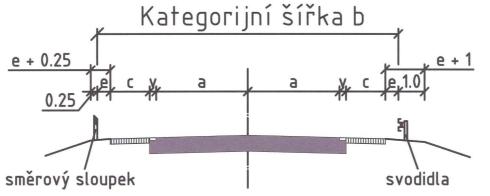


fig. 0560 (typical cross-section of two-lane roads)

	Návrhová	kategorie	Šířka v m					
písmenný znak	b m	návrhová rychlost km/h	a*)	v	С	e		
S	6,5**)	60; 50	2,75	0,00	0,00	0,50		
S	7,5	70; 60; 50	3,00	0,25	0,00	0,50		
S	9,5	80; 70; 60	3,50	0,25	0,50	0,50		
S	11,5	90; 80; 70	3,50	0,25	1,50	0,50		

fig. 0570 (basic elements of typical cross-section of two-lane roads)

 need to reduce the speed of vehicles in mainline because of road safety ⇒ narrowing its width by 0,25m

Auxiliary lanes

• basic width of auxiliary lanes "a_p" - fig. 0580

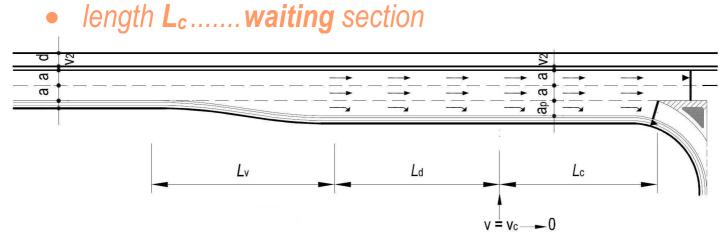
Pozemní komunikace	Základní šířka a _p vm	Šířka ve zdůvodněných případech v m
Kategorijní typ silnice:		
S 24,5	3,50	3,25 (3,00) ve stísněných podmínkách
S 20,75	3,25	3,00
S 11,5	3,25	3,00
S 9,5	3,25	3,00 (2,75) ve stísněných podmínkách
S 7,5	3,00	3,00 (2,75) ve stísněných podmínkách

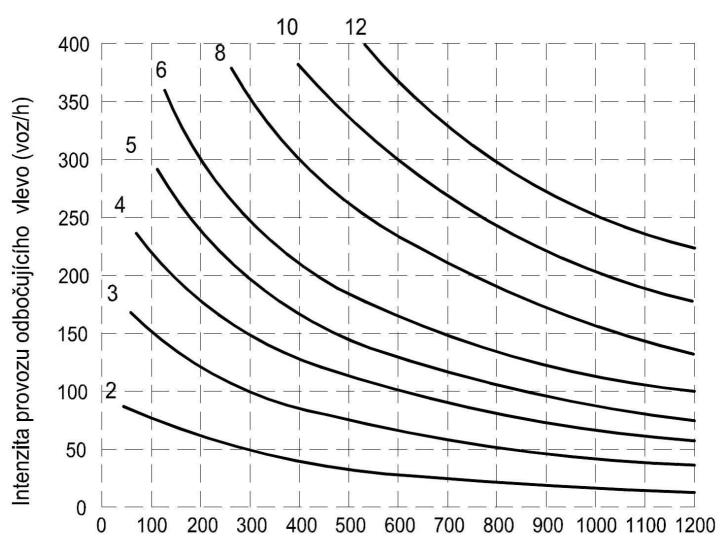
fig. 0580 (basic widths of auxiliary lanes on roads)

Diverge lane:

- it refers to T-junction models:
 - **SÚK V**.....left turn from major road (**flow 7**)
 - SÚK VIleft and right turn from major road (flows 3 and 7)
- It consists of three sections (fig. 0590):
 - length L_v..... diverge section (taper)

length L_d...... decelerating section




fig. 0590 (sections of auxiliary lane for right turn with stopping)

- length of each sections are based on speeds and other variables:
 - **v**_n.....**design speed on the** (major or minor) **road** – determine according to fig. 0020 and the values from the assignment:
 - rows given value of design category
 - columns..... terrain classification based on map data
 - vn [km/h] value in the upper part of intersection of selected row and column
 - $v = 0,75 \cdot v_n$... speed at the end of diverge section (L_v)
 - *v_k.....design speed in horizontal curve* of junction slip road – set for slip roads AC (based on knowledge of **v**_n **on major** road) and **CB** (based on knowledge of v_n on minor road) according to fig. 0600)

Kategorijní typ			Návrhová	Návri	Návrhová rychlost směrových oblouků křižovatky <i>v</i> _k v km/h							
		rychlost v km/h	15	20	25	30	35	40	50			
	C 4 5		30		٠							
	S 4,5		40		٠							
S 6,5 S 7,5			50			٠						
	S 7,5		60			٠						
	6	S 9,5	70				•					
S 11,5			80				•		t			
			90					•				

fig. 0600 (design speeds "v_k" for slip roads from at-grade junction)

- v_c.....speed at the end of decelerating section (L_d)
 - left turn (flow 7)v_c = 0
 - right turn (flow 3) $v_c = v_k$
- **ppv [%]** percentage of slow vehicles ⇒ take the same as on the major road
- **d = 1,7** *m/s*²..average deceleration
- slongitudinal gradient of the section in percentage (BEWARE OF DRIVING DIRECTION – respect the sign !!!)
- d' = a_p required cross displacement [m]
- P_v [voz]number of all vehicles waiting for turning ⇒ determine from the curves in the graph in fig. 0610 according to the combination of traffic volumes of each traffic flows

Intenzita provozu v opačném směru na hlavní komunikaci (voz/h)

fig. 0610 (graph to determine P_v)

Lengths of the three sections:

a) Diverge section (L_v):

Determine for all turn lanes (if they exists ⇒ for flows 3 and 7) according to "v_n" and "a_p" of the major road - fig. 0620

Šířka odbočovacího pruhu v m			Návrho	vá rychlost v	km/h		
	50	60	70	80	90	100	120
3,5 (3,25)	40	45	55	60	70	80	100
3,0 (2,75)	35	40	50	55	65	75	100

Délka vyřazovacího úseku pro šířky odbočovacích pruhů užších než 2,75 m se určí z poměru šířky k délce 1:10. Zvýrazněné hodnoty v tabulce platí zejména pro navrhování mimoúrovňových křižovatek.

fig. 0620 (length of diverge sections $_{\mu}L_{\nu}$ ")

• The taper for $d' = a_p$ is carried out on the length L_v merge lane 3 (fig. 0630)

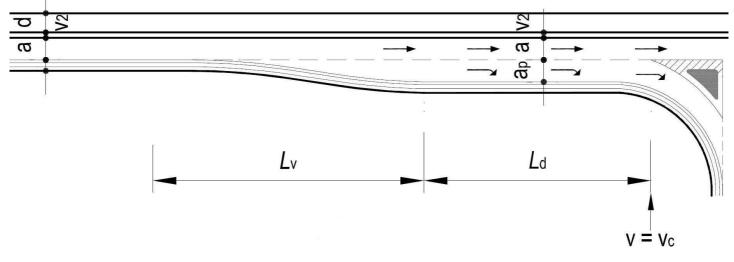
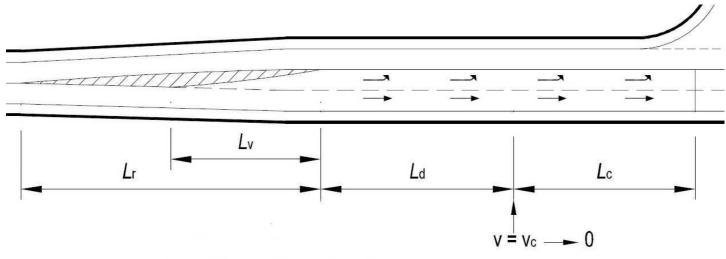


fig. 0630 (dimension L_v at turn lane for flow 3)


- b) Decelerating section (L_d):
 - Calculate using the following formula (for all turn lanes, if they exists – for flows 3 and 7) – BEWARE OF DRIVING DIRECTION – check the sign in front of "s"!

$$L_{d} = \frac{(0,75 \bullet v_{n})^{2} - v_{c}^{2}}{26 \bullet \left(d + \frac{s}{10}\right)}$$

- c) <u>Waiting section (L_c) :</u>
 - Calculate using formula (only for the left turn lane – for flow 7) – length of waiting section L_c is not used for turn lane without stopping (fig. 0630)

$$\mathsf{L}_{c} = \mathsf{P}_{v} \bullet \left(6 + \frac{8 \bullet \mathsf{ppv}}{100} \right)$$

• The beginning of length L_c is at the stopping point (e.g. stop line) – se fig. 0640

Lr je délka rozšiřovacího klínu

fig. 0640 (dimension of L_c at lane for flow 7)

- Length of the ghost island "Lr":
 - Calculate using the following formula in case of the major road:

$$L_r = v_n \bullet \sqrt{d'}$$

- Length L_r is used for left turn lane (flow 7) to construct the ghost island – see fig. 0640
- Ghost island at the opposite side is also made in length L_r (fig. 0650)

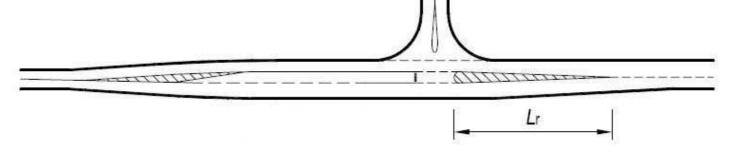


fig. 0650 (use of length L_r at the junction exit)

 Starting points of sections L_c and L_r are tangent points of left turn radii edges (fig. 0660)

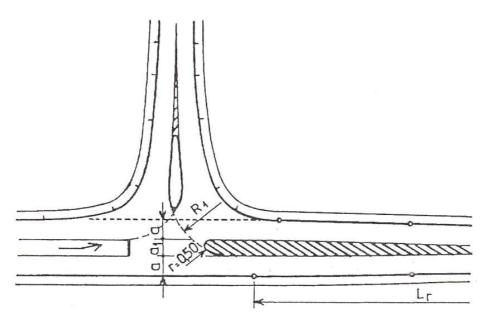


fig. 0660 (starting points of sections L_c and L_r)

Merge lane:

- concerns these T-junctions:
 - **SÚK VI** right turn off the minor road (**flow 6**)
- Consists of **3 sections** (see *fig. 0670* and *fig. 0672*):
 - length L_a accelerating section (for $v_n \le 80$ km/h) or
 - length L_{od} ... separating section (for $v_n > 80$ km/h) +
 - length *L_m*.... *manoeuvring* section
 - length Lz merging section (taper)

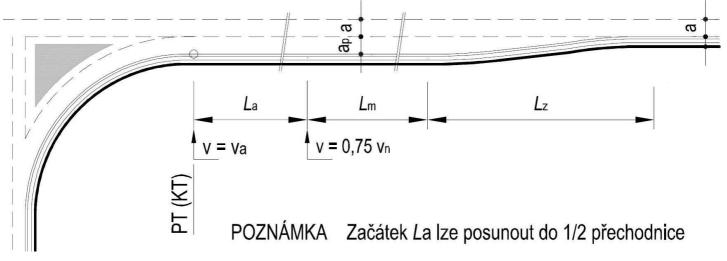
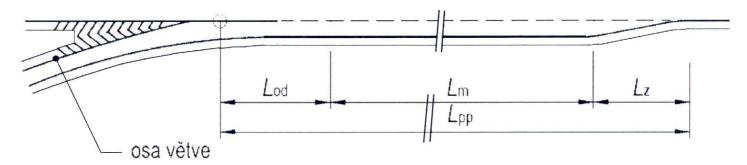



fig. 0670 (sections of merge lane for $v_n \le 80$ km/h)

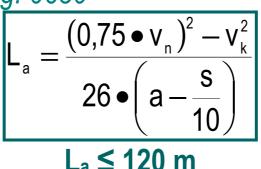


fig. 0672 (sections of merge lane for $v_n > 80$ km/h)

- each sections lengths are based on **speed and** other **variables**:
 - **v**_n......**major road design speed** determine according to fig. 0020 on the basis of entering values:
 - rowsentering value of design category
 - columns.... terrain classification based on map data
 - v_n [km/h]....value in the upper part of intersection of selected row and column
 - v = 0,75•v_n...speed at the end of accelerating section (L_a)
 - v_k......design speed in horizontal curve of junction slip road CB
 - **a = 1,2** *m/s*².. average acceleration
- *s*longitudinal slope of the section in percentage (*BEWARE OF DRIVING DIRECTION respect the sign* !!!)
- **length of 3 sections** for $v_n \le 80$ km/h (for all two-lane road categories with exceptions of S 11,5 / 90)

a) accelerating section (L_a):

calculate using formula (only for merge lane flow
6) – see fig. 0630

b) manoeuvring section (L_m):

 determine for merge lane flow 6 according to "v["] of major road according to fig. 0680

Návrhová rychlost v _n v km/h	50	60	70	80
Délka manévrovacího úseku <i>L</i> _m v m	75	85	100	115

fig. 0680 (lengths of manoeuvring sections $_{m}L_{m}$ " for $v_{n} \leq 80$ km/h)

c) merging section (L_z):

 determine for merge lane flow 6 according to "vn" and "ap" of the major road according to fig. 0690

Rychlost v km/h						
50	60	70	80			
4	0	50				
3	0	40				
	4		50 60 70 40 5			

Délka zařazovacího úseku pro šířky připojovacích pruhů užších než 2,75 m se určí z poměru šířky k délce 1:10.

fig. 0690 (lengths of merge sections $_{n}L_{z}$ " for $v_{n} \leq 80$ km/h)

lengths of 3 sections for v_n > 80 km/h (use only for road category S 11,5 / 90) – determine for merge lane

of flow **6** according to $_{v_n}$ of the major road according to *fig. 0694*

Návrhová rychlost v km/h	90	100	120
Délka oddělovacího úseku $L_{ m od}$ v m $^{\star)}$	30	30	30
Délka manévrovacího úseku v <i>L</i> _m v m	130	145	175
Délka zařazovacího úseku L _z v m	70	80	90
Délka připojovacího pruhu v m ($L_z + L_m + L_{od}$)	230	255	295
*) Začátek oddělovacího úseku není shodný se zač	átkem podélné čáry	v souvislé.	

fig 0601 (longthe of concreting menoculuring and

fig. 0694 (lengths of separating, manoeuvring and merging sections "L_{od}", "L_m" and "L_z" for v_n > 80 km/h)

Traffic islands and ghost islands

 traffic islands and ghost islands are used to separate and regulate various traffic flows

Traffic islands (see *fig. 0700*):

- implementation \Rightarrow raised and impassable (usually lined with kerbing)
- large islands ⇒ unpaved (with vegetation arrangement and without kerbing)

Dut	Entry	Tvar (schéma)						
Druh	Funkce	Kapkovitý	Obdélníkový se (zaoblením)	Trojúhelníkový	Složený			
Dělicí	Dělicí							
ostrůvek	Dělicí a ochranná							
Směrovací	Směrovací		postranní					
ostrůvek	Směrovací a ochranná							
Ochranný ostrůvek	Ochranná							

fig. 0700 (traffic islands)

Ghost islands:

- traffic islands are marked only by road marking
- they are always used at single carriageway major roads (use for mainline AB in the exercise)
- possibility of adding reflective elements (reflecting road studs,... etc.)
- edges of ghost islands define edges of traffic lanes

CALCULATION OF ALIGNING ELEMENTS OF INNER CURVES "CA" AND "BC" FOR LEFT TURN

Teardrop traffic island

- it is being established at the approach of minor road
- shape type A (is used for the exercise *fig. 0710*) and type B (need to slow down the entry on major road)

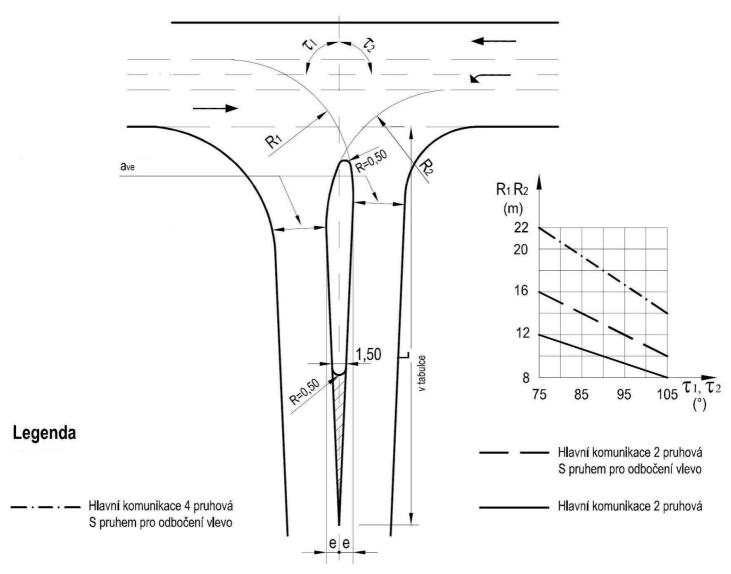
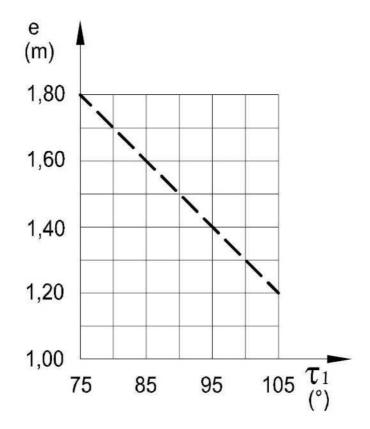



fig. 0710 (teardrop traffic island of type A – basic dimensions)

Determining (calculating) the necessary values

- converting angle values (in accordance with *fig. 0710*):
 - central angle of the curve CA $\tau_1 = \tau_{CA} = 180^\circ \alpha$
 - central angle of the curve BC $\tau_2 = \tau_{BC} = \alpha$
- determining the eccentricity of traffic island "e" (according to *fig. 0720*) by τ₁

fig. 0720 (determining the eccentricity of traffic island)

determining the length of traffic island "L" (according to fig. 0730) by major road arrangement:

	C	Charakteristika hlavní komunikace							
	dvoupruhová	vá dvoupruhová s pruhem čtyřpruhová s pro odbočení vlevo pro odbočení							
$R(\tau = 90^{\circ})$	10,00 m	13,00 m	18,00 m						
L	20,00 m	40,00 m 40,00 m							
а	šířka jízdních pruhů podle návrhové kategorie nebo typu příčného uspořádání								
⊿a+a	rozšířený jízdní pruh v oblouku								
bo	odsazení dopravního ostrůvku o	d okraje jízdního pruhu							

fig. 0730 (recommended values for type A teardrop traffic island construction)

- for **SÚK III** and **SÚK IV**.....L = **20** m
- for **SÚK V** and **SÚK VI** L = **40** m

determine the inner curves radii R₁ = R_{CA} and R₂ = R_{BC} out of *fig. 0710*:

•
$$\tau_1 \Longrightarrow R_1 = R_{CA}$$
 • $\tau_2 \Longrightarrow R_2 = R_{BC}$

- $SUK IV \Rightarrow$ solid lane $SUK VI \Rightarrow$ broken line
- SÚK III \Rightarrow solid lane SÚK V \Rightarrow broken line
- Left turning curves tangents CA and BC (in accordance) with *fig. 0710*):

$$T_{CA} = R_{CA} \bullet tg \frac{\tau_1}{2} \qquad T_{BC} = R_{BC} \bullet tg \frac{\tau_2}{2}$$

- determine traffic lanes widths on the basis of value "a" ••• of road typical cross-section according to fig. 0560 and fig. 0570:
 - $a_H = a$ for major road (in the direction AB)
 - $a_v = a$ for minor road (in the direction CX)
- determine the final width of enveloping curves of ••• traffic lanes $a_{ve(CA)} = a_{CA}$ and $a_{ve(BC)} = a_{BC}$ (for left turn "CA" and "BC" – see *fig. 0710*) by extending Δa_{CA} and Δa_{BC} (determine out of the following table using values R_{CA} and R_{BC})

										16
∆a	[m]	4,60	4,10	3,75	3,50	3,30	3,10	2,95	2,80	2,65
a_{ve}	$a_{ve(CA)} = a_{CA}' = a_v + \Delta a_{CA}$ $a_{ve(BC)} = a_{BC}' = a_v + \Delta a_{BC}$									