CLASIFICATION OF ROADS AND MOTORWAYS

Kv,p	growth	rate	of	passenger traffic
------	--------	------	----	-------------------

k_{V,F} growth rate of freight traffic

 T_V , $k_{V,P}$, $k_{V,F}$ consider for decommission (2045)

$$T_{V}^{50} = \left(T_{V,P}^{X \to Y} + T_{V,P}^{Y \to X}\right) \bullet k_{V,P} + \left(T_{V,F}^{X \to Y} + T_{V,F}^{Y \to X}\right) \bullet k_{V,F}$$

- Conversion to all-day traffic volume T_V:
 - First-class roads $T_v = \frac{T_v^{50}}{0,101}$
 - Second-class roads and third-class roads.... $T_v = \frac{T_v^{50}}{0.122}$
- T_V is also referred as AADT (Annual Average Daily Traffic)
- according to TP 189 is a 50 times a year occurring hourly traffic volume (on roads with mixed traffic pattern):
 - 10,1 % of all-day traffic volume first-class roads
 - 12,2 % of all-day traffic volume second-class roads and third-class roads
- $[T_V^{50}]$ = vehicles/hour
- [T_V] = vehicles/24hours

<u>classification of the terrain</u> (according to the topographical map in background – MP)

- 1. MP \in {10; 11; 12; 13} \rightarrow level, gently rolling terrain
- 2. MP \in {1; 4; 5; 8; 9} \rightarrow rolling terrain
- 3. MP \in {2; 3; 6; 7} \rightarrow mountainous terrain

DETERMINATION OF ROADS CATEGORY

(according to fig. 0010):

fig. 0010 (preliminary determination of the design category of road)

Procedure:

- according to the value T_V [vehicle/day] identify the design category in *fig. 0010*
- consider only 2 lane roads (category S 11,5 and below)
- select category according to the following priorities:
 - within the class road given in assignment
 - according to the line segment in which the value T_V intersects section highlighted solid line the closest to its centre

- the value T_V intersects no solid line → choose category according to the line segment in which the value T_V intersects section highlighted by a dotted line and also closest to the start position indicated by a solid line
- the value T_V intersects no segment of a line → choose the category by a line whose end is closest the value T_V

<u>the choice of a design speed</u> - "V" \rightarrow according to *fig. 0020*:

- rows known value of a design category
- columns known terrain classification
- V [km/h] = value at the top of the intersection specified row and column

Design category of road or motorway	Design speed for respective terrain [km/h]									
	level terrain	rolling terrain	mountair	mountainnous terrain						
	longitudinal gradient [%]								
D 33,5	120	120	100	80						
D 27,5	3	4	4,5	4,5						
S 25,5	120	100	80							
	3,5	4,5		5						
S 21,5	100	100		80						
	3,5	4,5		6						
S 24,5	100	80	70							
	3,5	4,5	6							
S 20,75	90	80	70							
	4	4,5	6							
S 11,5	90	80	70							
	4,5	6	7,5							
S 9,5	80	70		60						
	4,5	6		8						
S 7,5	70	60		50						
	4,5	7		9						
S 6,5	60	60		50						
	7	8		9						
S 4,0	40	40	30							
	10	11	12							

fig. 0020 (values V and G_{max})

Record the values (in the technical report):

- *terrain classification by the map (see above)*
- design traffic volumes......T_V [vehicle/day]
- road classas of the assignment
- design categoryaccording to the second column in fig. 0010
- V [km/h]design speed fig. 0020
- S_{max} [%] max. superelevation fig. 0030
- S₀ [%].....crossfall of normal crown

According to the knowledge of category and the design speed determine the **minimum horizontal curve radius R**_{min} – 2 options (depending on the crossfall and design speed):

✤ according to *fig.* 0030 ⇒ S_{max} should be in the project chosen from the interval $\langle 2,5\%; 6\% \rangle$

Design	Radii of horizontal curves R _{min} [m]										
speed		Crossfall of									
v [km/h]	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	normal crown S ₀ [%]
130	2450	2050	1750	1225	1350	1225	1125	1025	-	-	4500
120	2075	1750	1500	1300	1150	1050	950	850	-	117	3800
110	1750	1450	1250	1100	975	875	800	725	-	22	3200
100	1450	1200	1050	900	800	720	650	600	-	-	2700
90	1200	1000	850	750	650	600	550	500	-		2200
80	775	650	550	500	450	400	350	325	-		1700
70	600	500	425	375	330	300	270	250			1300
60	450	375	325	270	240	220	200	180	170	1	950
50	300	250	220	190	170	150	140	125	120	110	700
40	200	160	140	120	110	100	90	80	75	70	450
30	110	90	80	70	60	55	50	45	40	35	250

fig. 0030 (values of R_{min} depending on V and S_{max} or S_o)

use the following formula:

- $V \le 80$ km/h: $R \ge R_{min} =$
- V > 80 km/h:

$$A \ge R_{min} = \frac{0.3 \bullet V^2}{S_{max}}$$
$$A \ge R_{min} = \frac{0.36 \bullet V^2}{S_{max}}$$

DRAFT OF HORIZONTAL ALIGNMENT – 2 VARIANTS:

1. generous (red)

- the lowest operating $costs \Rightarrow$ no need to respect the terrain, large earthworks can be used
- little (maximum 5) horizontal curves
- larger radii of horizontal (R) curves (about 3 times the minimum value)
- it is possible to use bridges
- it is possible to use tunnels (only in mountainous terrain and under the conditions specified below)

2. <u>economical (green or blue)</u>

- the lowest construction costs \Rightarrow the attempt to respect the terrain (avoid large earthworks)
- more (over 5) horizontal curves
- minimum radii (R) of horizontal curves can be used (of course larger radii can be used if there is no need to use the minimum ones)

<u>PLAN</u>

- chainage of points A, TCi, CTi a B in "km" to 5 decimal places – *fig. 0040* (also specify the chainage of points A and B at the beginning and end of the route – *fig. 0050*)
- tables of horizontal curves including:
 - radius of curve in "m" to 2 decimal places
 - deflection angle of curve in "°" to 5 decimal places
 - length of curve in "m" to 2 decimal places
 - tangent of curve in "m" to 2 decimal places
- tables of objects (tables of bridges, culverts or tunnels)
 - number of the object (each type of object has its own numerical series)
 - name of the object type
 - chainage of the beginning and end of the object in "km" to 5 decimal places (only on chainage for culverts)

fig. 0040 (plan – chainage and tables of objects)

fig. 0050 (plan – chainages in point B)

Simplified horizontal alignment (no transition curves) (fig. 0070)

- I..... central angle of horizontal curves see *fig. 0060*
- tangent of horizontal curve:

$$\mathsf{T} = \mathsf{R} \bullet \mathsf{tg}\left(\frac{\mathsf{I}}{\mathsf{2}}\right)$$

length of horizontal curve:

$$L_{c} = R \bullet \operatorname{arcI} = \frac{R \bullet I \bullet z}{180}$$

τ

 $[I] = \circ$ • $[L_C] = m$ • [R] = m

fig. 0060 (simple circular curve without transition curves)

- to decide the chainage of points TC_i and CT_i
 - \Rightarrow measure the distance from the beginning of the route (point A) to the point TC₁
 - \Rightarrow measure the distance of each straight section between points CT_i and TC_{i+1}
 - \Rightarrow calculate the length of each horizontal curve between points TC_i and CT_i
 - \Rightarrow measure the distance from the last point CT_i to the end of the route (point B)

- the straight sections should be long enough, so the transition curves can be inserted there later, thus:
 - ⇒ the distance from the beginning of the route (point A) to the point $TC_1[m] \cong 1 \bullet V [km/h]$
 - ⇒ the length of each straight section between points CT_i and TC_{i+1} [m] \cong 2•V [km/h]
 - ⇒ the distance from the last point CT_i and the end of the route (point B) [m] \cong 1•V [km/h]

fig. 0070 (plan – an example of the overall solution)

- record values of the chainage points TC_i and CT_i into the technical report
- tables of horizontal curves contain number of the horizontal curve, R, I, L, T (see *fig. 0040*)
- the numbering of horizontal curves (and object) increases along with the chainage
- the extension lines of the chainage as well as the extension lines of the tables of horizontal curves should be drawn perpendicularly to the road centreline
- the brightness of the contour line colours should be suppress before printing of the plan drawing

Selecting a curve radius, depending on the length of previous straight section:

• the radius R_i of the horizontal curve "i" depending on the length of the adjacent straight section (tangent) should not be "inappropriate" according to *fig. 0080*

fig. 0080 (size of R depending on length of adjacent straight)

According to the knowledge of the category and the design speed "V" find and identify:

- maximum longitudinal gradient G_{max} (by *fig. 0020*)
- ♦ Maximum superelevation in curve S_{max} (according to fig. 0030) ⇒ S_{max} ∈ $\langle 2,5\%; 6\% \rangle$
- minimum radius of the horizontal curves R depending on the "V" by fig. 0030
- minimum radius of the crest curves:
 - R_{c,min} by *fig. 0100* and *fig. 0110* (use the smallest allowed for stopping)

fig. 0100 (diagram R_c)

	at design speed [km/h]											
	130	120	110	100	90	80	70	60	50	40		
smallest allowed for stopping	15 000	12 000	10 000	7 500	5 000	4 000	3 200	2 000	1 000	500		
smallest allowed for overtaking		-	-		37 000	31 000	25 000	20 000	11 000	5 000		

fig. 0110 (values R_{c,min})

minimum radius of the sag curves:

R_{s,min} – by *fig. 0120* and *fig. 0130* (use the smallest allowed)

fig. 0120 (diagram R_s)

	at design speed [km/h]											
	130	120	110	100	90	80	70	60	50	40		
smallest recomended	7 000	6 000	5 000	4 200	3 500	2 800	2 000	1 500	1 200	1 000		
smallest allowed	6 000	5 000	4 000	3 400	2 700	2 100	1 500	1 000	700	400		

fig. 0130 (values R_{s,min})

maximum drainage gradient M_{max} (by *fig. 0140*) – determined by terrain classification and road category

Design category of	Greatest allowed drainage gradient M [%] per terrain classification							
road or motorway	level terrain	rolling terrain	mountainous terrain					
D 33,5		7,0	7,0					
D 27,5	C F							
S 24,5	0,5	7,5	7,5					
S 20,75	7,0							
S 11,5 a S 9,5	7,5		8,5					
S 7,5 a S 6,5		8,5	10,0					
S 4,0	11,0	12,0	13,0					

fig. 0140 (values M_{max})